“비바람이 무척 심합니다. 강풍을 피해 나로호 발사대 지하시설로 안내하겠습니다. 언론에 발사대 지하를 공개하는 것은 처음입니다.”

지난 28일 오후 전남 고흥 외나로도에는 비바람이 거세게 몰아쳤다. 이곳에는 정확히 3년 전인 2013년 1월 30일 한국 첫 우주 발사체 ‘나로호(KSLV-1)’가 2번의 실패 끝에 발사에 성공한 ‘나로우주센터’가 있다. 강선일 한국항공우주연구원(이하 항우연) 발사대팀장은 나로호가 화염과 굉음을 뿜으며 하늘로 솟구쳤던 발사대 지하를 공개했다.

철조물로 만들어진 계단을 따라 내려가니 미로 같은 통로가 나타났다. 몇 차례를 꺾어 들어선 방에는 데이터센터의 대형 서버(중대형 컴퓨터)처럼 생긴 철제 캐비닛이 늘어서 있었다. 하지만 캐비닛 속은 모두 비어있었다.

“나로호 발사 당시 러시아 엔지니어들이 쓰던 제어장비들입니다. 발사 운용에 필요한 전자장비들이지요. 그러나 발사 직후 러시아가 모두 다시 가져갔습니다.” 강 팀장의 설명이 이어졌다. “걱정할 필요는 없습니다. 여기에 있었던 발사대온도제어계, 연료공급계 등 각종 전자장비들을 이미 자체 기술로 모두 개발했기 때문입니다.”

강팀장의 목소리에는 자신감이 넘쳤다. 나로우주센터 현장 연구자들은 나로호 발사로 얻은 경험과 노하우를 발판으로 ‘한국형 발사체(KSLV-2)’ 개발에 모든 것을 쏟아붓고 있었다.

2번의 실패 끝에 2013년 1월 30일 발사에 성공한 나로호

◆ 한국형 발사체 2017년 12월 시험대 오른다

내년 12월에 발사하는 시험발사체 예상도.

이날 나로우주센터 중앙관제실에서 한국형발사체 사업을 소개한 고정환 항우연 한국형발사체개발사업본부장은 “현재 개발 중인 한국형발사체 시험 발사를 내년 12월 진행할 예정”이라고 밝혔다. 항우연은 2019년 12월, 2020년 6월 두차례에 걸쳐 한국형발사체를 발사할 계획을 갖고 있다. 이들 발사는 원래 설계대로 3단의 한국형 발사체를 완성해 발사하는 것인데, 이에 앞서 75톤급 1기와 7톤급 1기로 구성해 독자 개발한 엔진의 비행 성능을 시험 발사하는 것이다.

고 본부장은 “현재 개발중인 추진력 75톤(t)급 액체엔진 1기와 7톤(t)급 액체엔진 1기로 구성된 시험발사체를 쏘는 것”이라며 “자체 기술력으로 개발한 엔진이 지상 연소 실험이 아닌 실제로 비행할 수 있는지를 확인하는 게 목적”이라고 말했다. 항우연이 한국형 발사체 ‘시험’ 발사 일정과 구체적인 스펙을 공개한 것은 이번이 처음이다.

한국형 발사체 개발 사업은 1.5톤급의 실용위성을 지구저궤도(고도 600~800km)에 쏘아올릴 수 있는 3단형 발사체를 자체 기술로 개발하는 게 골자다. 75톤급 액체엔진 4기를 묶어서 1단 엔진(총 추진력 300톤)으로 만들고, 그 위에 75톤급 엔진 1기로 구성된 2단 엔진과 7톤급 엔진 1기로 구성된 3단 엔진으로 얹는다. 75톤급 엔진의 추진력은 약 1.1톤의 경차 70대를 쏘아올릴 수 있는 힘과 같다.

◆ 불안정 연소 잡고, 최적의 ‘시퀀스’ 확보가 관건

28일 방문한 나로우주센터는 75톤급 액체엔진과 7톤급 액체엔진을 개발하기 위한 설비를 대부분 갖췄다. 엔진지상 시험설비 제어계측동과 연소설비, 고공연소설비, 3단엔진(7톤급) 연소설비 등이 눈에 들어왔다. 나로호 발사대 옆에서 한국형 발사체 발사대 공사가 진행되고 있었다.

가장 먼저 둘러본 엔진지상 시험설비 제어계측동(이하 제어계측동)은 모든 설비를 제어할 수 있는 곳이다. 화재 등 비상시 밸브 차단, 정전 대비 무정전 전원장치(UPS) 가동, CCTV 및 열화상카메라 제어, 3단계 소화 설비 가동 등 연소 실험 및 안전과 관련된 모든 통제를 이곳에서 할 수 있다.

제어계측동은 한 눈에 연소실험 현황을 보는 것 말고도 더 중요한 역할을 한다. 바로 불안정 연소 현상을 파악하고 연소에 이르기까지의 과정(시퀀스)을 면밀하게 분석하는 것이다.

지난해 12월 100초 연소 실험에 성공한 7톤급 액체엔진 연소 장면을 헬리캠이 촬영했다.

김성룡 책임연구원은 “엔진 실험 설비 내부에 저주파·고주파 장비를 설치, 불안정 연소현상과 엔진 진동을 파악하고 있다”며 “가장 중요한 것은 산화제와 연료를 연소기 내에 공급하는 타이밍을 잡는 최적의 ‘시퀀스’를 확보하는 것”이라고 말했다.

한국형 발사체의 엔진은 크게 연소기와 가스 발생기, 터보펌프로 구성된다. 먼저 가스발생기가 고압가스 연소를 통해 터보펌프의 터빈을 작동시키면 터보펌프는 연소실에 약 100바(1바는 약 1기압)의 압력으로 초당 170kg의 산화제(액체산소)와 80kg의 연료(항공등유)를 연소기에 공급한다. 연소기에서는 약 60바의 압력으로 연료가 연소되고 이 때 나오는 고온, 고압 가스를 노즐을 통해 분출해 추진력을 얻는다.

엔진의 이런 작동 과정은 계산에 의해 나오는 것이 아니다. 다수의 실험으로 노하우를 확보해야 한다는 것이다. 고정환 본부장은 “여러 개의 밸브가 적절한 시간에 맞춰 정확하게 작동돼야 불안정 연소를 최소화하고 정상적인 엔진 연소 반응이 나올 수 있다”며 “이미 지난해 12월 7톤급 엔진을 100초 동안 연소시키는 데 성공했고 조만간 75톤급 엔진 연소 실험도 진행할 예정”이라고 말했다.

◆ 고공 연소 실험까지 마쳐야...지금부터가 중요

지난해 12월 100초 연소 실험에 성공한 7톤급 3단엔진이 있었던 곳에서는 약간의 그을음을 확인할 수 있었다. 엔진 아래쪽 약 20m 깊이로 만들어진 화염 및 고온고압 가스 배출 통로에서는 냉각장치를 가동한 흔적도 남아있다. 연소실 내부 온도는 약 3300도, 화염 온도 1800도에 달하기 때문에 실험에서 냉각장치는 필수적이다.

항우연 나로우주센터 연구원들이 7톤급 액체엔진 연소 실험을 위해 엔진을 점검하고 있다.

바로 옆에는 직경 3m, 높이 5m에 이르는 진공 챔버가 있고 챔버 내부엔 7톤급 엔진 목업이 있었다. 목업은 실제 장비를 제작하기 앞서 각 부품 배치 등을 실제와 똑같이 만든 실물 크기의 모형이다.

김종규 책임연구원은 “7톤급인 3단엔진은 고도 170km에서 엔진이 점화해야 하기 때문에 진공과 거의 다름 없는 0.05기압 환경에서도 연소 실험을 해야 한다”고 말했다. 그는 또 “마찬가지로 75톤급 엔진인 2단 엔진도 고도 70km 이상에서 작동해야 하기 때문에 1단 엔진과는 설계가 달라야 한다”며 “진공챔버에서 고공 연소 실험도 진행할 계획”이라고 밝혔다.

항우연은 올해 7톤급 액체엔진의 임무 시간인 약 500초까지 연소 시간을 늘리기로 했다. 75톤급 엔진(1단) 연소실험은 2월부터 진행하고 3단 엔진 고공 연소실험은 6월쯤, 2단 엔진 고공 연소 실험은 올해 말쯤 진행한다.

조광래 항우연 원장은 “엔진 개발시 가장 어려웠던 불안정 연소 등을 거의 해결했기 때문에 앞으로 남은 일정대로 진행할 수 있을 것”이라고 밝혔다.